Jumat, 10 Juni 2011

Tugas Sistem Operasi - 2

KERNEL
Bagian ini akan menjelaskan kernel secara umum dan sejarah perkembangan Kernel Linux. Kernel adalah suatu perangkat lunak yang menjadi bagian utama dari sebuah sistem operasi. Tugasnya melayani bermacam program aplikasi untuk mengakses perangkat keras komputer secara aman.

Karena akses terhadap perangkat keras terbatas, sedangkan ada lebih dari satu program yang harus dilayani dalam waktu yang bersamaan, maka kernel juga bertugas untuk mengatur kapan dan berapa lama suatu program dapat menggunakan satu bagian perangkat keras tersebut. Hal tersebut dinamakan sebagai multiplexing.

Akses kepada perangkat keras secara langsung merupakan masalah yang kompleks, oleh karena itu kernel biasanya mengimplementasikan sekumpulan abstraksi hardware. Abstraksi-abstraksi tersebut merupakan sebuah cara untuk menyembunyikan kompleksitas, dan memungkinkan akses kepada perangkat keras menjadi mudah dan seragam. Sehingga abstraksi pada akhirnya memudahkan pekerjaan programer.

Untuk menjalankan sebuah komputer kita tidak harus menggunakan kernel sistem operasi. Sebuah program dapat saja langsung di- load dan dijalankan diatas mesin 'telanjang' komputer, yaitu bilamana pembuat program ingin melakukan pekerjaannya tanpa bantuan abstraksi perangkat keras atau bantuan sistem operasi. Teknik ini digunakan oleh komputer generasi awal, sehingga bila kita ingin berpindah dari satu program ke program lain, kita harus mereset dan meload kembali program-program tersebut.

Ada 4 kategori kernel: 

Monolithic kernel. Kernel yang menyediakan abstraksi perangkat keras yang kaya dan tangguh.

Microkernel. Kernel yang menyediakan hanya sekumpulan kecil abstraksi perangkat keras sederhana, dan menggunakan aplikasi-aplikasi yang disebut sebagai server untuk menyediakan fungsi-fungsi lainnya.

Hybrid (modifikasi dari microkernel). Kernel yang mirip microkernel, tetapi ia juga memasukkan beberapa kode tambahan di kernel agar ia menjadi lebih cepat

Exokernel. Kernel yang tidak menyediakan sama sekali abstraksi hardware, tapi ia menyediakan sekumpulan pustaka yang menyediakan fungsi-fungsi akses ke perangkat keras secara langsung atau hampir-hampir langsung.

Dari keempat kategori kernel yang disebutkan diatas, kernel Linux termasuk kategori monolithic kernel. Kernel Linux berbeda dengan sistem Linux. Kernel Linux merupakan sebuah perangkat lunak orisinil yang dibuat oleh komunitas Linux, sedangkan sistem Linux, yang dikenal saat ini, mengandung banyak komponen yang dibuat sendiri atau dipinjam dari proyek pengembangan lain.

Kernel Linux pertama yang dipublikasikan adalah versi 0.01, pada tanggal 14 Maret 1991. Sistem berkas yang didukung hanya sistem berkas Minix. Kernel pertama dibuat berdasarkan kerangka Minix (sistem UNIX kecil yang dikembangkan oleh Andy Tanenbaum). Tetapi, kernel tersebut sudah mengimplementasi proses UNIX secara tepat.

Pada tanggal 14 Maret 1994 dirilis versi 1.0, yang merupakan tonggak sejarah Linux. Versi ini adalah kulminasi dari tiga tahun perkembangan yang cepat dari kernel Linux. Fitur baru terbesar yang disediakan adalah jaringan. Versi 1.0 mampu mendukung protokol standar jaringan TCP/IP. Kernel 1.0 juga memiliki sistem berkas yang lebih baik tanpa batasan-batasan sistem berkas Minix. Sejumlah dukungan perangkat keras ekstra juga dimasukkan ke dalam rilis ini. Dukungan perangkat keras telah berkembang termasuk diantaranya floppy-disk, CD-ROM, sound card, berbagai mouse, dan keyboard internasional. Dukungan juga diberikan terhadap modul kernel yang loadable dan unloadable secara dinamis.

Satu tahun kemudian dirilis kernel versi 1.2. Kernel ini mendukung variasi perangkat keras yang lebih luas. Pengembang telah memperbaharui networking stack untuk menyediakan support bagi protokol IPX, dan membuat implementasi IP lebih lengkap dengan memberikan fungsi accounting dan firewalling. Kernel 1.2 ini merupakan kernel Linux terakhir yang PC-only. Konsentrasi lebih diberikan pada dukungan perangkat keras dan memperbanyak implementasi lengkap pada fungsi-fungsi yang ada.

Pada bulan Juni 1996, kernel Linux 2.0 dirilis. Versi ini memiliki dua kemampuan baru yang penting, yaitu dukungan terhadap multiple architecture dan multiprocessor architectures. Kode untuk manajemen memori telah diperbaiki sehingga kinerja sistem berkas dan memori virtual meningkat. Untuk pertama kalinya, file system caching dikembangkan ke networked file systems, juga sudah didukung writable memory mapped regions. Kernel 2.0 sudah memberikan kinerja TCP/IP yang lebih baik, ditambah dengan sejumlah protokol jaringan baru. Kemampuan untuk memakai remote netware dan SMB (Microsoft LanManager) network volumes juga telah ditambahkan pada versi terbaru ini. Tambahan lain adalah dukungan internal kernel threads, penanganan dependencies antara modul-modul loadable, dan loading otomatis modul berdasarkan permintaan (on demand). Konfigurasi dinamis dari kernel pada run time telah diperbaiki melalui konfigurasi interface yang baru dan standar.

Semenjak Desember 2003, telah diluncurkan Kernel versi 2.6, yang dewasa ini (2008) telah mencapai patch versi 2.6.26.1 ( http://kambing.ui.edu/kernel-linux/v2.6/). Hal-hal yang berubah dari versi 2.6 ini ialah: 

Subitem M/K yang dipercanggih.
Kernel yang pre-emptif.
Penjadwalan Proses yang dipercanggih.
Threading yang dipercanggih.
Implementasi ALSA (Advanced Linux Sound Architecture) dalam kernel.

Dukungan sistem berkas seperti: ext2, ext3, reiserfs, adfs, amiga ffs, apple macintosh hfs, cramfs, jfs, iso9660, minix, msdos, bfs, free vxfs, os/2 hpfs, qnx4fs, romfs, sysvfs, udf, ufs, vfat, xfs, BeOS befs (ro), ntfs (ro), efs (ro). 


THREAD
Thread adalah rangkaian eksekusi dari sebuah aplikasi java dan setiap program java minimal memiliki satu buah thread. Sebuah thread bisa berada di salah satu dari 4 status, yaitu new, runnable, blocked, dan dead.

Status Thread

• New, Thread yang berada di status ini adalah objek dari kelas Thread yang baru dibuat, yaitu saat instansiasi objek dengan statement new. Saat thread berada di status new,belum ada sumber daya yang dialokasikan, sehingga thread belum bisa menjalankan perintah apapun.

• Runnable. Agar thread bisa menjalankan tugasnya, method start() dari kelas Thread harus dipanggil. Ada dua hal yang terjadi saat pemanggilan method start(), yaitu alokasi memori untuk thread yang dibuat dan pemanggilan method run(). Saat method run() dipanggil, status thread berubah menjadi runnable, artinya thread tersebut sudah memenuhi syarat untuk dijalankan oleh JVM. Thread yang sedang berjalan juga berada di status runnable.

• Blocked. Sebuah thread dikatakan berstatus blocked atau terhalang jika terjadi blocking statement, misalnya pemanggilan method sleep(). sleep() adalah suatu method yang menerima argumen bertipe integer dalam bentuk milisekon. Argumen tersebut menunjukkan seberapa lama thread akan “tidur”. Selain sleep(), dulunya dikenal method suspend(), tetapi sudah disarankan untuk tidak digunakan lagi karena mengakibatkan terjadinya deadlock. Thread akan menjadi runnable kembali jika interval method sleep()-nya sudah berakhir, atau pemanggilan method resume() jika untuk menghalangi thread tadi digunakan method suspend()

• Dead. Sebuah thread berada di status dead bila telah keluar dari method run(). Hal ini bisa terjadi karena thread tersebut memang telah menyelesaikan pekerjaannya di method run(), maupun karena adanya pembatalan thread. Status jelas dari sebuah thread tidak dapat diketahui, tetapi method isAlive() mengembalikan nilai boolean untuk mengetahui apakah thread tersebut dead atau tidak.

Thread dan Proses
Thread dan proses adalah metode dari parallelizing aplikasi. Namun, proses adalah unit pelaksanaan independen yang berisi informasi negara mereka sendiri, menggunakan ruang alamat mereka sendiri, dan hanya berinteraksi dengan satu sama lain melalui mekanisme komunikasi interprocess (umumnya dikelola oleh sistem operasi). Aplikasi yang biasanya dibagi ke dalam proses selama fase desain, dan proses master secara eksplisit memunculkan sub-proses ketika masuk akal untuk fungsionalitas aplikasi secara logis terpisah signifikan. Proses, dengan kata lain, adalah arsitektur membangun.
Sebaliknya, thread adalah coding membangun yang tidak mempengaruhi arsitektur aplikasi. Proses tunggal mungkin berisi beberapa thread; semua thread dalam proses berbagi negara yang sama dan sama ruang memori, dan dapat berkomunikasi satu sama lain secara langsung, karena mereka berbagi variabel yang sama.

Keuntungan Thread
• Responsiveness : pada aplikasi yang interaktif dapat membuat program terus berjalan meskipun bagian dari program tersebut diblok atau sedang menjalankan operasi yang panjang
• Resource sharing : sebuah aplikasi dapat mempunyai beberapa thread yang berbeda dalam sebuah alamat memori yang sama karena Thread berbagi memori dan sumber daya dari proses yang memilikinya.
• Economy: karena mahal untuk mengalokasikan memori dan sumber daya untuk pembuatan proses. Alternatifnya adalah dengan pengunaan thread, akan lebih ekonomis untuk membuat sebuah thread daripada menggunakan memory baru.
• Utilization of multiproccesor architectures: dalam arsitektur multiprosesor, dimana setiap thread dapat berjalan secara pararel pada prosesor yang berbeda.

Tidak ada komentar:

Posting Komentar